2,138 research outputs found

    Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

    Full text link
    Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image super-resolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.Comment: This work is accepted in CVPR 2017. The code and datasets are available on http://vllab.ucmerced.edu/wlai24/LapSRN

    Semi-supervised Local Cluster Extraction by Compressive Sensing

    Full text link
    Local clustering problem aims at extracting a small local structure inside a graph without the necessity of knowing the entire graph structure. As the local structure is usually small in size compared to the entire graph, one can think of it as a compressive sensing problem where the indices of target cluster can be thought as a sparse solution to a linear system. In this paper, we propose a new semi-supervised local cluster extraction approach by applying the idea of compressive sensing based on two pioneering works under the same framework. Our approves improves the existing works by making the initial cut to be the entire graph and hence overcomes a major limitation of existing works, which is the low quality of initial cut. Extensive experimental results on multiple benchmark datasets demonstrate the effectiveness of our approach

    Analytical approximations to charged black hole solutions in Einstein-Maxwell-Weyl gravity

    Full text link
    The Homotopy Analysis Method (HAM) is a useful method to derive analytical approximate solutions of black holes in modified gravity theories. In this paper, we study the Einstein-Weyl gravity coupled with Maxwell field, and obtain analytical approximation solutions for charged black holes by using the HAM. It is found that the analytical approximate solutions are sufficiently accurate in the entire spacetime outside the black hole's event horizon, and also consistent with numerical ones for charged black holes in the Einstein-Maxwell-Weyl gravity.Comment: 17 pages, 6 figures. arXiv admin note: text overlap with arXiv:2308.0350

    (4RS)-Methyl 4-cyano-4-cyclo­hexyl-4-phenyl­butano­ate

    Get PDF
    In the crystal structure of the title compound, C18H23NO2, there are only van der Waals inter­actions present. The cyclo­hexyl ring has a chair conformation. The longer axes of the displacement parameters of the non-H atoms forming the ethyl­methyl­carboxyl­ate skeleton are perpendicular to the plane through the non-H atoms of this skeleton

    A cusp-capturing PINN for elliptic interface problems

    Full text link
    In this paper, we propose a cusp-capturing physics-informed neural network (PINN) to solve discontinuous-coefficient elliptic interface problems whose solution is continuous but has discontinuous first derivatives on the interface. To find such a solution using neural network representation, we introduce a cusp-enforced level set function as an additional feature input to the network to retain the inherent solution properties; that is, capturing the solution cusps (where the derivatives are discontinuous) sharply. In addition, the proposed neural network has the advantage of being mesh-free, so it can easily handle problems in irregular domains. We train the network using the physics-informed framework in which the loss function comprises the residual of the differential equation together with certain interface and boundary conditions. We conduct a series of numerical experiments to demonstrate the effectiveness of the cusp-capturing technique and the accuracy of the present network model. Numerical results show that even using a one-hidden-layer (shallow) network with a moderate number of neurons and sufficient training data points, the present network model can achieve prediction accuracy comparable with traditional methods. Besides, if the solution is discontinuous across the interface, we can simply incorporate an additional supervised learning task for solution jump approximation into the present network without much difficulty

    An efficient neural-network and finite-difference hybrid method for elliptic interface problems with applications

    Full text link
    A new and efficient neural-network and finite-difference hybrid method is developed for solving Poisson equation in a regular domain with jump discontinuities on embedded irregular interfaces. Since the solution has low regularity across the interface, when applying finite difference discretization to this problem, an additional treatment accounting for the jump discontinuities must be employed. Here, we aim to elevate such an extra effort to ease our implementation by machine learning methodology. The key idea is to decompose the solution into singular and regular parts. The neural network learning machinery incorporating the given jump conditions finds the singular solution, while the standard finite difference method is used to obtain the regular solution with associated boundary conditions. Regardless of the interface geometry, these two tasks only require supervised learning for function approximation and a fast direct solver for Poisson equation, making the hybrid method easy to implement and efficient. The two- and three-dimensional numerical results show that the present hybrid method preserves second-order accuracy for the solution and its derivatives, and it is comparable with the traditional immersed interface method in the literature. As an application, we solve the Stokes equations with singular forces to demonstrate the robustness of the present method

    A shallow physics-informed neural network for solving partial differential equations on surfaces

    Full text link
    In this paper, we introduce a shallow (one-hidden-layer) physics-informed neural network for solving partial differential equations on static and evolving surfaces. For the static surface case, with the aid of level set function, the surface normal and mean curvature used in the surface differential expressions can be computed easily. So instead of imposing the normal extension constraints used in literature, we write the surface differential operators in the form of traditional Cartesian differential operators and use them in the loss function directly. We perform a series of performance study for the present methodology by solving Laplace-Beltrami equation and surface diffusion equation on complex static surfaces. With just a moderate number of neurons used in the hidden layer, we are able to attain satisfactory prediction results. Then we extend the present methodology to solve the advection-diffusion equation on an evolving surface with given velocity. To track the surface, we additionally introduce a prescribed hidden layer to enforce the topological structure of the surface and use the network to learn the homeomorphism between the surface and the prescribed topology. The proposed network structure is designed to track the surface and solve the equation simultaneously. Again, the numerical results show comparable accuracy as the static cases. As an application, we simulate the surfactant transport on the droplet surface under shear flow and obtain some physically plausible results
    corecore